High-order splitting schemes for semilinear evolution equations
نویسندگان
چکیده
منابع مشابه
High-order splitting schemes for semilinear evolution equations
We first derive necessary and sufficient stiff order conditions, up to order four, for exponential splitting schemes applied to semilinear evolution equations. The main idea is to identify the local splitting error as a sum of quadrature errors. The order conditions of the quadrature rules then yield the stiff order conditions in an explicit fashion, similarly to that of Runge–Kutta schemes. Fu...
متن کاملTowards High-Order Fluctuation-Splitting Schemes for Navier-Stokes Equations
This paper reports progress towards high-order fluctuation-splitting schemes for the Navier-Stokes Equations. High-order schemes we examined previously are all based on gradient reconstruction, which may result in undesired mesh-dependency problem due to the somewhat ambiguous gradient reconstruction procedures. Here, we consider schemes for P2 elements in order to eliminate the need for such g...
متن کاملHigh Order Compact Finite Difference Schemes for Solving Bratu-Type Equations
In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...
متن کاملHigh Order Schemes for Wave Equations
The continuous and discontinuous Galerkin time stepping methodologies are combined to develop approximations of second order time derivatives of arbitrary order. This eliminates the doubling of the number of variables that results when a second order problem is written as a first order system. Stability, convergence, and accuracy, of these schemes is established in the context of the wave equat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BIT Numerical Mathematics
سال: 2016
ISSN: 0006-3835,1572-9125
DOI: 10.1007/s10543-016-0604-2